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Abstract:
Thiols are the organic compounds that contain a sulphydryl group. Among all the antioxidants that are available in the 
body,  thiols constitute the major portion of the total body antioxidants and they play a significant role in defense 
against reactive oxygen species. Total thiols composed of both intracellular and extracellular thiols either in the free 
form as oxidized or reduced glutathione, or thiols bound to proteins. Among the thiols that are bound to proteins, 
albumin makes the major portion of the protein bound thiols, which binds to sufhydryl group at its cysteine-34 portion. 
Apart from their role in defense against free radicals, thiols share significant role in detoxification, signal transduction, 
apoptosis  and various  other  functions  at  molecular  level.  The thiol  status  in  the  body can be assessed easily  by 
determining the serum levels of thiols. Decreased levels of thiols has been noted in various medical disorders including 
chronic renal failure and other disorders related to kidney,  cardiovascular disorders, stroke and other neurological 
disorders,  diabetes  mellitus,  alcoholic  cirrhosis  and various  other  disorders.  Therapy using thiols  has  been under 
investigation for certain disorders. 
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Introduction to Thiols:
Thiols are a class of organic compounds that contain a 
sulfhydryl  group (-SH), also known as a thiol group, 
that is composed of a sulfur atom and a hydrogen atom 
attached to a carbon atom. Protein thiols in the plasma 
include  the  protein  sulfhydryl  groups  and  protein 
mixed  disulphides  with  homocysteine, 
cysteinylglycine,  cysteine  and  glutathione.  Human 
plasma  contains  homocysteine  (HcySH), 
cysteinylglycine  (CysGlySH),  cysteine  (CysSH),  and 
glutathione (GSH) as reduced thiols. These thiols are 
also  found  as  low-molecular-mass  (symmetrical) 
disulphides,  i.e.,  homocystine  [(HcyS)2], 
cystinilglycine  [(CysGlyS)2],  cystine  [(CysS)2],  and 
glutathione  disulphide  (GSSG).1 In  human  plasma, 
concentration of protein sulphydryl groups (PSH) is in 
the 0.4–0.5 mM range,  while  that  of low-molecular-
mass thiols is in the 0.1–20 μM range.2,3

Within cells, the major low-molecular-weight sulphy-
dryl/disulphide pool, GSH/GSSG, is principally in the 
reduced form. The CysSH/(CysS)2 pool, mainly in the 
disulphide form,  quantitatively represents  the  largest 
pool of low-molecular-weight thiols and disulphides in 
plasma  and  the  extracellular  compartment  on  the 
whole. Therefore, intracellular proteins may be preval-
ently  S-glutathionylated,  while  extracellular  proteins 
may  be  predominantly  S-cysteinylated.  Plasma  con-
centration of GSH is generally in the range of 2–4 μM 
2-4,  CysSH is  in  the  range  of  8–10  μM, and that  of 
(CysS)2 is higher than 40 μM.5. 

Protein Thiols: 
Mammalian  tissues  are  rich in  protein thiols  (20-40 
mM) and many intracellular proteins have been identi-
fied  that  can  undergo  thiol  group  modification. The 
redox state of protein thiols is dependent on cellular 
location. Protein cysteines can be oxidised to free thi-
ols,  intra  or  interprotein disulfides,  nitrosothiols  and 
sulphenic, sulphinic or sulphonic acids. In cytoplasm, 
the environment is highly reduced, mainly due to the 
high  intracellular  concentration  of  GSH  and  the 
GSH/GSSG ratio of 30-100. Hence, cysteins of cyto-
plasmic proteins are mainly present as free thiols. Ex-
tracellular  proteins,  in  contrast,  are  mainly  disulfide 
proteins  due  to  the  oxidative  environment.  Though 
proteins  on  plasma  membrane  are  at  the  interface 
between an oxidising and reducing environment, many 
studies have shown the presence of exofacial protein 
thiols which are kept in reduced state by protein di-
sulpfide isomerases.6 

Albumin is the most abundant protein in plasma and it 
makes up more than 50% of the total plasma protein7. 
The total  thiol  status in the body,  especially thiol  (-
SH) groups present on protein are considered as major 
plasma  antioxidants  in  vivo  and  most  of  them  are 
present over albumin,8 and they are the major reducing 
groups present in our body fluids.9  Cys-34 of albumin 
accounts for the bulk of free thiol (-SH) in plasma.10 

About  one-third  of  the  albumin  molecules  in  the 

plasma  carry  disulfide-bonded  thiols  at  this  Cys-34 
residue11. The pKa of the thiol group of Cys-34 is ab-
normally low (pKa = 5)  12. This is in contrast to the 
pKa of most of the low molecular weight aminothiols 
present in plasma. Thus, at physiological pH, albumin-
Cys34 exists primarily as thiolate anion and is highly 
reactive with metals, thiols, and disulfides.11 Metallo-
thionein, a protein that binds 5–7 ions of metals such 
as Zn2-, Cu-, Cd2-, and Hg2-  via thiolate bonds, forms a 
significant proportion of total cell protein thiol. Albu-
min  is  also  known  to  carry  other  thiols  (e.g.  gluta-
thione and cysteinylglycine) along with other metabol-
ites (e.g. nitric oxide) on Cys-34. 

Glutathione: 
Glutathione  is  a  ubiquitous  tripeptide,  γ-glutamyl-
cysteinyl  glycine,  found in most  plants,  microorgan-
isms, and all mammalian tissues. Glutathione exists in 
two forms the thiol-reduced (GSH) and disulfideoxid-
ized  (GSSG).13 Eukaryotic  cells  have  three  major 
reservoirs of GSH, cytosol (90%), mitochondria (10%) 
and small percentage in the endoplasmic reticulum 14-16 

The γ-glutamyl linkage promotes intracellular stability 
and the sulfhydryl group is required for GSH’s func-
tions.  The  peptide  bond  linking  the  amino-terminal 
glutamate and the cysteine residue of GSH is through 
the γ-carboxyl group of glutamate rather than the con-
ventional α-carboxyl group. This unusual arrangement 
resists  degradation by intracellular  peptidases  and is 
subject to hydrolysis  by only one known enzyme, γ-
glutamyltranspeptidase (GGT), which is on the extern-
al surfaces of certain cell types.13,  16 Furthermore, the 
carboxyl-terminal glycine moiety of GSH protects the 
molecule against cleavage by intracellular γ-glutamyl-
cyclotransferase.16 As a consequence, GSH resists in-
tracellular degradation and is only metabolized extra-
cellularly.

GSH as cysteine storage and the γ-glutamyl cycle
Homocysteine  is  situated  at  a  critical  regulatory 
branch point in sulfur metabolism. It can be remethyl-
ated to methionine, an important amino acid in protein 
synthesis, or converted to cysteine in the transsulfura-
tion pathway.17-19  Cysteine is the only thiolcontaining 
amino acid in proteins. The metabolism of it is com-
plex and is still incompletely understood.17 Its degrad-
ation proceeds by several pathways leading to forma-
tion of taurine or inorganic sulfate.20 One of the major 
determinants of the rate of GSH synthesis is the avail-
ability of cysteine. Cysteine is normally derived from 
the diet and protein breakdown, and in the liver from 
methionine  via  the  transsulfuration  pathway.17,21 

Cysteine  differs  from other  amino  acids  because  its 
sulfhydryl  form,  cysteine,  is  predominant  inside  the 
cell whereas its disulfide form, cystine, is predominant 
outside the cell. Cysteine readily autoxidizes to cystine 
in the extracellular fluid; once it enters the cell, cystine 
is  rapidly  reduced  to  cysteine.21 Therefore,  the  key 
factors  that  regulate  the  hepatocellular  level  of 
cysteine other than diet include membrane transport of 
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cysteine, cystine, and methionine as well as the activ-
ity  of  the  transsulfuration  pathway.21-23 Although 
glutamate  and  glycine  are  also  precursors  of  GSH, 
there is no evidence to suggest that their transport in-
fluences GSH synthesis since they are synthesized via 
several metabolic pathways within hepatocytes.21 

One of the most important functions of GSH is to store 
cysteine because cysteine is extremely unstable extra-
cellularly  and  rapidly  auto-oxidizes  to  cystine,  in  a 
process producing potentially toxic oxygen free radic-
als.24 Cysteine also is needed for glutathione synthesis 
and  provides  its  thiol  residue.24 Synthesis  of  gluta-
thione takes place in two steps. At first,  g-glutamyl-
cysteine  synthetase  couples  glutamate  to  cysteine 
forming  γ-glutamylcysteine.  The  availability  of 
cysteine is regulatory in that step. Glutathione is then 
directly synthesized by coupling γ-glutamylcysteine to 
glycine catalyzed by glutathione synthetase.24,25 The γ-
glutamyl  cycle allows GSH to serve as a continuous 
source of cysteine. GSH is released from the cell by 
carrier-mediated  transporter(s)24 and  the  ectoenzyme 
GGT then transfers the γ-glutamyl moiety of GSH to 
an amino acid (the best acceptor being cystine), form-
ing γ-glutamyl  amino acid and cysteinylglycine.  The 
γ-glutamyl  amino  acid can then be transported back 
into the cell to complete the cycle.

Once inside the cell, the γ-glutamyl amino acid can be 
further metabolized to release the amino acid and 5-
oxoproline, which can be converted to glutamate and 
used  for  resynthesis  of  GSH.  Cysteinylglycine  is 
broken down by dipeptidase to generate cysteine and 
glycine. Cysteine is readily taken up by most if not all 
cells. Once inside the cell, the majority of cysteine is 
incorporated into GSH; some is incorporated into pro-
tein, depending on the need of the cell, and some is de-
graded  into  sulfate  and taurine.  For  most  cells,  this 
mechanism provides a continuous source of cysteine. 
Thus, the γ-glutamyl cycle allows the efficient utiliza-
tion of GSH as cysteine storage.24

In the human body, glutathione has diverse important 
functions  such  as  storage  and  transport  of  cysteine, 
maintaining the reduced state  of proteins  and thiols, 
and protecting cells from toxic compounds such as re-
active oxygen species, drugs, or heavy metal ions.24-26 

Two different  types  of  detoxification  enzymes  need 
glutathione  as  a  substrate.  Glutathione  peroxidases 
catalyze the reaction of glutathione with (oxygen) free 
radicals,  whereby  glutathione  is  oxidized.  Sub-
sequently,  the  inactive  oxidized  form of  glutathione 
can be reduced again by glutathione reductase. Gluta-
thione S-transferases catalyze the conjugation between 
glutathione  and  toxic  compounds.  That  glutathione 
conjugate is then excreted and additional glutathione 
has to be synthesized.  Antioxidants,  including GSH, 
have been shown to protect against or delay apoptosis 
triggered by many different stimuli.27-31 One study has 
shown that the protective effect of thiol agents may be 
related  to  down-regulation  of  Fas  expression  on  T 

lymphocytes  rather  than  their  antioxidative  proper-
ties.30 

It has been shown that there is accelerated GSH efflux 
from the cell stimulated to undergo apoptosis with dif-
ferent proapoptotic stimuli27,28,31 and depletion of cell 
GSH will facilitate apoptosis to occur, provide antiox-
idants  extracellularly,  and  possibly stimulate  phago-
cytic cells to engulf the apoptotic cell.28 Mixed disulf-
ides with proteins are formed by reaction of S-thiola-
tion, in which protein thiols conjugate with non-pro-
tein thiols.32 This process plays a regulatory and an an-
tioxidant  role,  since  it  protects  protein–SH  groups 
against  irreversible  oxidation  to  –SO2H and –SO3H, 
and, on the other hand, it participates in signal trans-
duction.33  Redox state of these surface thiols regulates 
platelet aggregation, HIV-1 entry34, integrin mediated 
adhesion35,  and  receptor  shedding.36 The  regulatory 
and antioxidant action of S-thiolation is closely con-
nected with dethiolation via the reduction of disulfides 
catalyzed  by  thioltransferases,  thioredoxin  and  glut-
aredoxin.37,38

Oxidative stress and thiol status
Under conditions of moderate oxidative stress, oxida-
tion of Cys residues can lead to the reversible forma-
tion of mixed disulfides between protein thiol groups 
and low–molecular-mass thiols (S-thiolation), particu-
larly with GSH (S-glutathionylation). Protein S-gluta-
thionylation can directly alter or regulate protein func-
tion (redox regulation)  and may also have  a  role  in 
protection  from  irreversible  (terminal)  oxidation.  S-
glutathiolation  of  protein  cysteine  residues  protects 
against  higher  oxidation  states  of  the  protein  thiol, 
thereby  preserving  the  reversibility  of  this  type  of 
modification. Second, reduced protein thiols can be re-
generated from their S-glutathiolated forms enzymatic-
ally through the action of protein disulfide isomerase, 
mitochondrial glutaredoxin, or thioredoxin. Protein S-
glutathiolation has also been implicated in the control 
of ubiquitination, the binding of transcription factor c-
Jun to DNA, and sarcoplasmic Ca2--ATPase activity.39

S-Glutathionylated proteins accumulate under oxidat-
ive/ nitrosative stress conditions, but they can be read-
ily reduced to free thiol groups when normal cellular 
redox status is recovered by glutaredoxins (thioltrans-
ferases) or reducing agents. A characteristic hallmark 
of many pathophysiologic conditions is a decrease in 
the  GSH: GSSG ratio.  When GSSG accumulates  in 
cells, it can undergo disulfide exchange reactions with 
protein thiols, leading to their S-glutathionylation. S-
Glutathionylated  proteins  have  been  investigated  as 
possible  biomarkers  of  oxidative/nitrosative  stress in 
some  human  diseases,  such  as  renal  cell  carcinoma 
and  diabetes.  Glutathionylated  hemoglobin  is  in-
creased in patients with type 1 and type-2 diabetes, hy-
perlipidemia, and uraemia associated with haemodia-
lysis or peritoneal dialysis.40

http://ojhas.org 3

OJHAS Vol 8 Issue  2(2)  Prakash M, Shetty MS, Tilak P, Anwar N. Total Thiols: Biomedical Importance And Their Alteration In Various Disorders.



Thioredoxin, an enzyme ubiquitously expressed in en-
dothelial  cells and medial  smooth muscle  cells,  is  a 
major cytosolic protein thiol reductant and appears to 
be  a  target  for  ROS with  implications  for  cell  sig-
nalling.40 Reversibility of the oxidation-mediated pro-
tein modification can be achieved via the action of an-
other enzyme, glutaredoxin.41 Protein thiols represent a 
prominent biological target for reactive nitrogen spe-
cies (RNS) involved in cell signalling within the vas-
culature and many other tissues.  S-nitrosation of pro-
tein cysteine residues is a motif for –NO related sig-
nalling. Selectivity in the S-nitrosation of protein thi-
ols represents a means for allosteric control of protein 
function9.

The chemical modification of protein thiols by ROS 
and RNS does not occur in isolation. Considering its 
relative abundance, it is not surprising that GSH func-
tions as a prominent coreactant for protein thiol modi-
fication in the face of ROS and RNS. It has been es-
timated that proteins can scavenge the majority (50%–
75%) of reactive species generated42 and much of this 
function  is  attributed  to  the  thiol  groups  present  on 
them. The serum levels of protein -SH in the body in-
dicate antioxidant status and low levels of protein -SH 
correlated positively with the increased levels of lipid 
peroxides8 and of advanced oxidation protein products 
(AOPPs).43

Thiol status in various disorders:
Hypertension and cardiovascular disorders: The biolo-
gical effects of nitric oxide (NO) are in large part me-
diated by  S-nitrosylation  of  peptides and proteins  to 
produce bioactive  S-nitrosothiols (SNOs).44-46  The ob-
servation of abnormal SNO levels in numerous patho-
physiological  states45 suggests  that  dysregulation  of 
SNO homeostasis may contribute to disease pathogen-
esis. For example, the hypotension of human sepsis is 
accompanied by increases in circulating levels of vas-
odilatory SNOs.46 Gandley et al47 has shown that the 
buffering  function  of  SNO-albumin  is  impaired  in 
preeclamptic patients, where the thiol of albumin acts 
as  a  sink  for  NO  and  thus,  raises  blood  pressure. 
Gandley et al extend this paradigm by proposing that a 
defect in SNO turnover contributes to the hypertension 
of preeclampsia. 

In the blood, S-nitrosoalbumin (SNO-albumin) and S-
nitrosohemoglobin  (SNO-Hb)  constitute  the  major 
conduits for circulating NO bioactivity. Although both 
SNOs  may  influence  blood  pressure,  they  operate 
within  distinct  signaling  circuits.  SNO-Hb  can  be 
viewed as a principal regulator of SNO homeostasis, 
adaptively  modulating  NO chemistry  to  control  NO 
bioactivity.  In  contrast,  it  appears  that  rather  than 
transducing  a  specific  signal,  albumin  operates  as  a 
buffer  to  maintain  NO homeostasis.48 S-nitrosylation 
of albumin occurs at Cys-34 via reactions—with NO 
or nitrosothiols—that are favored by design: specific-
ally,  both  hydrophobic  pockets  in  albumin  (NO/O2 
coupling)  and bound copper  (NO/metal  redox coup-

ling)  may serve to generate  nitrosylating species.49-51 

Gandley et al47 make the case that the buffering func-
tion of SNO-albumin is impaired in preeclamptic pa-
tients, where the thiol of albumin acts as a sink for NO 
and thus, raises blood pressure. Redistribution of NO, 
from the tissues into the hydrophobic core of the pro-
tein, subserves  S-nitrosylation and lowers the steady-
state  level  of  vasodilatory  NO  within  the  vascular 
smooth  muscle.50  Accumulating  evidence  strongly 
suggests  a  role  of  SNOalbumin  in  mitigating  cardi-
ovascular risk. 

In  women  with  preeclampsia,  homocysteine  and 
cysteine  levels,  which  are  lowered  in  normotensive 
pregnancy, were comparable to levels in nonpregnant 
women, whereas glutathione levels were lower. Those 
results  suggest  that  in  women  with  preeclampsia, 
glutathione use is higher or its synthesis is disturbed. 
Therefore,  glutathione  might  affect  pathophysiology 
of preeclampsia.52 Zhang et al53 demonstrate regulation 
by a mitochondria-specific thioredoxin, which reduces 
oxidative stress and increases NO bioavailability, thus 
preserving vascular endothelial cell function and pre-
venting  atherosclerosis  development. It  has  been 
shown that LDL oxidation by L-cysteine and Cu2+ re-
quires superoxide bu t not hydrogen peroxide or hy-
droxyl  radical.  The  reaction  may  involve  the  metal 
ion-dependent  formation  of  L-cystine  radical  anion 
which is oxidized by oxygen yielding superoxide and 
the  disulfide.  LDL  modified  by  L-cysteine  and 
smooth  muscle  cells  exhibited  similar  physical  and 
biological  properties,  indicating  that  thiol-dependent 
superoxide generation may be the oxidative mechan-
ism in both the systems. Thiols also promote superox-
ide independent lipid peroxidation  but human macro-
phages fail to rapidly degrade these oxidized LDLs.54 

In Kidney Diseases:  Presence of oxidative stress in 
renal  failure  is  well  proved  and  the  several  studies 
have shown decreased levels of thiol status in chronic 
renal  failure  (CRF).55-57 Increased  presence  of  ROS 
generated in these patients are believed to consume the 
available thiol groups. Studies have also shown negat-
ive correlation of serum creatinine with the protein thi-
ols,57 indicating  increased  protein  SH  consumption 
with  increase  in  severity  of  renal  failure.58  Albumin 
provides the bulk of the total serum thiols 56,59 and loss 
of  albumin  in  the  urine  of  CRF  patients,  logically, 
should increase thiol groups in urine. Contrary to this, 
a study has shown significantly low levels of urinary 
protein thiols.59  The authors have also shown signific-
ant decrease in serum albumin and protein-bound thiol 
groups  in  CRF patients.  These findings  suggest  that 
the albumin excreted in the urine is deficient in thiol 
groups. 

The decrease in protein thiols in the urine of CRF pa-
tients could be because of increased oxidation of albu-
min-bound thiol groups in the serum.56,59  Excretion of 
such albumin,  deficient in the reduced form of thiol 
groups,  in  the urine decreased the levels  of  protein-
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bound thiols in urine.  There occurs a significant  de-
crease in urinary thiols in patients with proteinuria and 
it varies with the amount of protein excreted in urine.60 

There was also a significant decrease in plasma pro-
tein  thiol  levels  in  pediatric  nephrotic  syndrome.61 

primary  glomerular  diseases62,  moderate  to  severe 
chronic kidney disease63, end stage renal disease64, sys-
temic  lupus  erythematosus  (SLE)  with  and  without 
nephritis65.  It  was  seen  that  when  the  sodium  con-
sumption was increased, the serum protein thiols were 
found to be decreased.66 

Gastro Intestinal Diseases:  Oxidative stress gets ex-
acerbated by pro-oxidants  such as  various  drugs  in-
cluding  alcohol.  Ingested  alcohol  besides  producing 
striking metabolic imbalances in the liver, also leads to 
the formation of reactive oxygen species (ROS). The 
levels  of  serum protein thiols  were  found  to  be de-
creased in alcohol abusers.67,68 Synthesis of glutathione 
and  cysteine  mainly  occurs  in  hepatocytes,  whereas 
most other tissues are supplied with these thiols via si-
nusoidal efflux into the blood. Since canalicular efflux 
also occurs, thiols may be present in human bile. How-
ever,  thiol  composition of  human gallbladder  bile  is 
largely unknown, which makes it difficult to speculate 
on the exact function of thiols in bile.69 

Variation in non protein thiol levels was found in hu-
man gall bladder bile of patients with most of the thi-
ols in their  oxidized forms84 which may indicate the 
presence  of  considerable  chemical  or  oxidative 
stress.70 Also, inflammatory and oxidative events have 
remarkable  importance  in  bladder  cancer.  Patients 
with bladder cancer were found to have significantly 
lower  levels  of  total  thiols  and  protein  bound  thiol 
groups, the levels were much lower in invasive type.71   
Therefore, thiols are present in considerable amounts 
in  human  gallbladder  bile  of  patients  with  various 
gastrointestinal  disorders,  with  most  of  the  thiols  in 
their oxidised forms, which may indicate the presence 
of considerable chemical or oxidative stress in the pa-
tients.  Previous  studies  have  also  suggested  that 
Helicobacter pylori (H. pylori) infection may play an 
important role in the process of atherosclerosis. Serum 
-SH levels were significantly lower in H. pylori posit-
ive group than H. pylori negative group.72

Diabetes mellitus and other disease conditions: Free 
radical mediated oxidative stress has been implicated 
in the pathogenesis of diabetes mellitus (DM) and its 
complications.73 Serum protein thiols  have been found 
to  be  decreased  in  both  types  of  diabetes  mellitus. 
These decreases were partially explained by metabol-
ic-, inflammatory- and iron alterations.74 Serum protein 
thiols have been found to be decreased in patients with 
complications of type 2 diabetes mellitus.75 There have 
been reports on decreased plasma thiol levels in dia-
betic patients recently.76 Significant decrease in P-SH 
levels in diabetic hemodialysis  (DHD) patients com-
pared with  the level  in healthy participants and DM 
patients. While there was no significant difference in 

the whole blood GSH levels between the DM patients 
and controls, It  was significantly higher in DHD pa-
tients in comparison to the DM patients. The low P-
SH level  in  DHD patients,  but  not  in  DM patients, 
suggests that dialysis is responsible for this decrease.77

A significant increase in free iron in Fe+3 state with a 
decrease in protein thiols has been shown in diabetic 
cases under poor glycemic control.78  The finding that 
thiols as facile targets of glycation and low molecular 
mass thiols as potent glycation inhibitors, may aid the 
design of therapeutic agents for the treatment  of the 
complications  of  diabetes.79  Elevated  glucose  levels 
can  induce  oxidative  stress  in  gestational  diabetes 
(GDM) mothers. This may be due to the increased ox-
idative stress prevalent in GDM.80-83 A significant in-
crease in the erythrocytic  GSH and protein thiols in 
GDM maternal blood when compared to controls have 
been  observed.  Cord  blood  levels  of  protein  thiols 
were also significantly increased in GDM84  This may 
be  in  response  to  the  milieu  of  increased  oxidative 
stress in case of GDM cord blood and oxidative stress 
in the fetus induced by GDM.83 

Human  amylin  (hA)  is  a  small  fibrillogenic  protein 
that is the major constituent of pancreatic islet amyl-
oid,  which  occurs  in  most  subjects  with  type-2 dia-
betes mellitus. There is growing evidence that hA tox-
icity  towards  islet  b-cells  is  responsible  for  their 
gradual  loss  of  function  in  type-2  diabetes  mellitus. 
Preventing  hA-mediated  cytotoxicity  has  been  pro-
posed as a route to halt the progression of this disease, 
although this has not yet  been demonstrated in vivo. 
The  thiol  antioxidants,  N-acetyl-L-cysteine  (NAC), 
GSH  and  dithiothreitol,  which  not  only  react  with 
ROS, but also modulate the cellular redox potential by 
increasing intracellular levels of GSH and ⁄ or by act-
ing as thiol  reducing agents,  afford  almost  complete 
protection  and inhibit  the  progression  of  hA-evoked 
apoptosis. These results indicate that, in addition to the 
induction of oxidative stress,  hA appears to mediate 
cytotoxicity through signalling pathways that are sens-
itive to the actions of thiol antioxidants.85

Other disorders:  A significant fall in plasma protein 
thiols have also been observed after the assisted repro-
duction procedures like intrauterine insemination, in-
dicating  increased  oxidative  stress  after  the  proced-
ure.86  Oxidative stress has been implicated in the de-
generation of dopaminergic neurons in the substantia 
nigra  (SN) of  Parkinson's  disease (PD) patients.  An 
important biochemical feature of presymptomatic PD 
is a significant depletion of the thiol antioxidant gluta-
thione (GSH) in these neurons resulting in oxidative 
stress, mitochondrial  dysfunction,  and ultimately cell 
death.87  In  schizophrenic  patients,  the  amount  of 
homocysteine in plasma was higher compared and the 
level of GSH, C-SH and CG-SH was decreased. This 
indicates  that  ROS  and  RNS  may  stimulate 
oxidative/nitrative modifications of plasma proteins in 
schizophrenic patients.88,89 In apoptosis, generation of 
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oxidative  stress,  leads to perturbation of protein thi-
ols.90  

Total thiol levels were significantly reduced in patients 
with  osteoarthritis.91  The role of  oxidative  stress has 
been studied in rheumatoid arthritis (RA) and other in-
flammatory joint diseases including psoriatic arthritis 
(PsA).92 A biochemical disturbance of plasma sulfhy-
dryl/disulfides balance is observed in patients with RA 
compared to controls with an increase in some oxid-
ised  forms  (disulfides  and  protein  mixed  disulfides) 
and  a  decrease  in  free  thiols.  The  increase  in  total 
homocysteine,  correlated to the higher  risk of cardi-
ovascular diseases in RA patients, is associated with 
higher levels of the oxidised forms, disulfides and pro-
tein-thiol mixed disulfides.93 The SH levels in synovial 
fluid were significantly lower in patients affected by 
PsA and rheumatoid arthritis compared to Osteo Arth-
ritis  (OA).  The serum SH levels  in PsA were lower 
than OA and higher than RA patient.92  Low levels of 
free  thiol  groups  have  been  observed  in  Henoch-
Schönlein purpura.94  Ankylosing spondylitis (AS) is a 
chronic inflammatory disease where neutrophil activa-
tion-mediated oxidative stress may also have an im-
portant role in the pathogenesis of AS. Therefore, the 
importance of neutrophil activation as the main source 
of  oxidative  stress  was  investigated  in  patients  with 
AS and was found to be decreased in thiol levels in the 
total AS patient group.95  Wilson's disease (WD) is an 
inherited  disorder  characterized  by  selective  copper 
deposition in liver and brain, chronic hepatitis and ex-
tra-pyramidal signs. There was a decrease of protein-
thiols,  GSH/GSSG  ratio  in  the  liver  and  striatum. 
Hence,  it  is  assumed  that  enhanced  oxidative  stress 
may play a central role in the cell degeneration in WD, 
at the main sites of copper deposition.96
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